

Scan pattern similarity predicts the semantic similarity of sentences across languages above and beyond their syntactic structure

Moreno I. Coco, Eunice G. Fernandes, Manabu Arai, and **Frank Keller**

Overview

- Human **cognition** is a highly integrated system: **processes and representations** are multimodal.
- The words we utter to describe a visual scene are grounded in the objects we attend.
- Visual attention and language production correlate across modalities (Coco & Keller, 2012).
- We can predict what you will say based on where you look.

Research Questions

Does this effect generalize across different languages? Is the correlation driven by semantics or syntax? What does this tell us about visual grounding?

Background

Many cognitive processes are multimodal:

Background

Many cognitive processes are multimodal:

"The man is sitting ..."

For many everyday tasks, processing streams in **multiple modalities** need to be coordinated:

- Motor tasks such as tea-making or driving (Land et al. 1999);
- Dialogue and collaborative problem solving (Coco et al. 2018);
- Language comprehension and production (Griffin & Bock 2000).

Here, we will focus on the coordination of **visual and linguistic processing.**

Scan patterns

In this work, we will use picture description to study multimodal processing:

"The suitcase is on the counter next to the man."

When describing an image, a participant follows a scan pattern while a uttering a sentence.

Scan patterns

When viewing a scene, participants generate scan patterns – sequences of fixated objects:

Sentences are sequences of words: the, suitcase, is, on, the, counter, next, to, the, man **Hypothesis:** Speakers use **referents** to coordinate across modalities: for example noun phrases are **grounded** to objects.

Based on this hypothesis, we predict:

- two participants that follow similar scan patterns on an image also produce similar sentences describing it;
- ultimately, we should be able to predict what someone will say if we know their scan pattern.

To test this, we need **similarity measures** for both scan patterns and sentences.

Comparing scan patterns

Hypothesis: Speakers use **referents** to coordinate across modalities: for example noun phrases are **grounded** to objects.

Now let's give participants a scene description task and measure:

- the similarity of the scan patterns they produce;
- the similarity of the sentences they generate.

If the grounding hypothesis correct, then the two similarity measures should correlate.

(We will provide details about how to measure similarity later.)

Testing the grounding hypothesis (Coco & Keller, 2012)

Similar sentences are associated with similar scan patterns

But what about other languages?

- Human **cognition** is a highly integrated system: **processes and representations** are multimodal.
- The words we utter to describe a visual scene are grounded in the objects we attend.
- Visual attention and language production correlate across modalities (Coco & Keller, 2012).

Research Questions

Does this effect generalize across different languages? Is the correlation driven by semantics or syntax? What does this tell us about visual grounding?

Grounding across scenes and languages

Let's test the generality of the grounding hypothesis!

The suitcase is on the counter next to the man.

Part.1

Part. 2

The suitcase is on the counter

similarity

within the same scene

Does this hold between different scenes?

A mulher corre na estrada (Portuguese, **SVO**) 女性は道路を走っている woman on road running is (Japanese, **SOV**)

Does this hold across different languages?

This study: data collection

74 participants (24 British English, 28 European Portuguese and 20 Japanese) were asked to **describe** scenes (24) after being **prompted** with an **ambiguous cue** word while being eye-tracked.

N = 1,776 sentences paired with scan patterns generated during sentence production.

Sentence complexity:

- One man waits for another man to fill out the registration form for a hotel
- o homem está a fazer check-in no hotel
- ホテルのロビーでは男性が2人話をしている。

Scan pattern length:

- Preparation for production:
- min = 800 ms; max = 10205 ms
- During production:
- min = 2052 ms; max = 18361 ms

(No. of objects: μ = **28.65**; σ = **11.30**)

Label

Scene

Scan pattern similarity

Longest Common Subsequence (Gusfield, 1997)

Longest subsequence common to two sequences among all possible sub-sequences.

Semantic similarity

Universal sentence encoder (Cer, et al., 2017, 2018)

A deep neural network trained to extract sentence embeddings which are vectors encoding meaning: sentences closer in vector space are semantically more similar.

the doctors

keeps

a day,

apple

S

what is your

USE is a multilingual model, which means we can compute semantic similarity across languages!

Your

We use the dot product to measure vector distance.

Syntactic similarity

Scan patterns of two Japanese speakers (yellow and red):

Cue word: Man (男性)

Participant 1: 事務所に 2 人の男性が働いている NOUN NOUN ADP NOUN ADP NOUN ADP VERB SCONJ VERB (two men working in the office)

Participant 2: 男性が 2 人才フィスにいます NOUN ADP NOUN NOUN ADP VERB AUX (two men are in the office)

We part of speech tag descriptions using SpaCy, employing a set of language-independent PoS labels. Pairwise similarity metrics for this trial: LCS (Scan patterns): 0.57 Semantic similarity (dot product of USE vectors): 0.89 LCS (Parts of Speech): 0.71

Putting it all together

Putting it all together

does some work on a computer

Results: Semantics within/between languages

Between languages

Scene 🗧 Between Scenes 📥 Same Scene

Semantically similar sentences are associated with similar scan patterns – within and between languages.

Results: Syntax within/between languages

Between languages

Scene

Between Scenes

Same Scene

Syntactically similar sentences are not associated to similar scan patterns – within or between languages.

Sanity check: Shuffling sentences and scan patterns

Results: Mixed effects models

Dependent Variable	Predictor	β (Std. β)	CI (2.5 %; 97.5 %)	t-value ¹
Scan Pattern ¹	(Intercept)	.21(0)	.2; .21	186.23***
	Sentence	.5(.07)	.049; .056	26.41^{***}
	Language	.005(.02)	.003; .007	5.22^{***}
	Scene	.08(.11)	.072; .088	19.49^{***}
	Sentence x Language	.02(.03)	.023; .028	19.61^{***}
	Sentence x Scene	.06(.03)	.045; .071	8.52^{***}
	Language x Scene	.02(.01)	.014; .024	7.26^{***}
	Sentence x Language x Scene	-0.03(01)	-0.039; -0.018	-5.27^{***}
Scan Pattern ³	(Intercept)	.2(0)	.19; .2	118.28***
	Syntax	.05(.07)	.042; 0.54	-15.04^{***}
	Language	004(02)	006;002	-3.5^{***}
	Scene	.087(.12)	.079; .094	21.8^{***}
	Syntax x Language	.024(.07)	.022; .027	17.97^{***}
	Syntax x Scene	.062(.04)	.052; .072	12.13^{***}
	Language x Scene	.009(.007)	.006; .011	6***
Scan Pattern (shuffled) ²	(Intercept)	.22(0)	.22; .22	2742.48***

Conclusions

- Semantically similar sentences are associated with similar scan patterns.
- This relationship holds across scenes and across languages, and even for languages with different surface realizations (e.g., English and Japanese).
- In contrast, syntactic sentence similarity is predictive of scanpattern similarity **only within the same language and scene**.
- Suggests that **visual grounding** is mostly driven by semantics, unaffected by the syntax of individual languages.
- What about task generality? Our results might only hold for scene description.