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Abstract

We evaluate 8 different word embedding
models on their usefulness for predicting
the neural activation patterns associated with
concrete nouns. The models we consider
include an experiential model, based on
crowd-sourced association data, several
popular neural and distributional models, and
a model that reflects the syntactic context
of words (based on dependency parses). Our
goal is to assess the cognitive plausibility
of these various embedding models, and
understand how we can further improve our
methods for interpreting brain imaging data.

We show that neural word embedding mod-
els exhibit superior performance on the tasks
we consider, beating experiential word repre-
sentation model. The syntactically informed
model gives the overall best performance
when predicting brain activation patterns from
word embeddings; whereas the GloVe distri-
butional method gives the overall best perfor-
mance when predicting in the reverse direc-
tion (words vectors from brain images). Inter-
estingly, however, the error patterns of these
different models are markedly different. This
may support the idea that the brain uses dif-
ferent systems for processing different kinds
of words. Moreover, we suggest that taking
the relative strengths of different embedding
models into account will lead to better models
of the brain activity associated with words.

1 Introduction

How are word meanings represented in the human
brain? Is there a single amodal semantic system or are
there multiple responsible for representing meanings
of different classes of words? Recently, a series of
studies have emerged showing that a combination

of methods from machine learning, computational
linguistics and cognitive neuroscience are useful for
addressing such questions.

(Mitchell et al., 2008) pioneered the use of corpus-
derived word representations to predict patterns of
neural activation’s when subjects are exposed to a
stimulus word. Using their framework, a series of
papers have evaluated various techniques of comput-
ing word representation models based on different
assumptions, as we review in section 2.

Since these early successes, a range of new
word embedding methods have been proposed
and successfully used in a variety of NLP tasks,
including methods based on deep learning with
neural networks. (Baroni et al., 2014) and (Pereira
et al., 2016) present systematic studies, showing
that also behavioural data from psycholinguistics
can be modelled effectively using neural word
embedding models such as GloVe(Pennington et al.,
2014) and word2vec(Mikolov et al., 2013). At
the same time, studies in the area of vision have
shown that deep learning models fit very well to the
neocortical data (Cadieu et al., 2014; Khaligh-Razavi
and Kriegeskorte, 2014) and they can help to better
understand the sensory cortical system (Yamins and
DiCarlo, 2016). To investigate how well the new word
embedding models, and in particular the deep learning
models, fare in helping to understand neural activation
patterns in the domain of language, we now present
a systematic evaluation of 8 word embedding models,
listed in section 3, against the neuroimaging data from
(Mitchell et al., 2008), following the experiments and
primary results in (Mijnheer, 2017; Ahmed, 2017).

To address this goal, we take word embedding mod-
els designed based on different assumptions of how
meanings of words can be represented and evaluate
their performance on either the task of predicting brain
data from word embeddings or the reverse, predicting
word embeddings from brain data. The basic assump-
tion here is that the better the performance of a model



is the more probable it is that the way the word embed-
ding model is built reflects what happens in the human
brain to understand a meaning of a word. In our exper-
iments, we compare modern neural word embedding
models with traditional approaches that are based
on manually assigned linguistic word attributes, and
neuro-inspired techniques based on sensory-motor
features. Besides a large-scale evaluation of various
word embedding models, we conduct a detailed error
analysis to understand the differences between them.

The first research question we investigate is: How
well does each word embedding model allow us to
predict neural activation patterns in human brain?
To answer this we measure how well different word
embedding models can predict the brain imaging
data. Taking this one step further, we also train our
models in the reverse direction: to directly predict
word embeddings from brain data.

The second research question that we investigate
is: What is the best word embedding model for
predicting brain activation for different (classes
of) nouns? Maybe human brain uses different
processes to understand meanings of different kind
of words (Riddoch et al., 1988; Caramazza et al.,
1990; Warrington and Shallice, 1984; Caramazza
and Shelton, 1998). We do a qualitative analysis of
our results to see whether different word embedding
models are good in predicting the brain activation
for different categories of nouns. The third question
we address is Which are the most predictable voxels
in the brain for each word embedding model? By
answering this question we want to test the hypothesis
that different areas of the brain are responsible for
processing different aspect of the meaning of nouns.
If different models have different performance either
for different noun pairs or for different brain areas, the
next step would be to find a way to integrate different
models to build a model that better fits the brain data.

2 Related Work

The tradition of developing computational models
to predict neural activation patterns given a repre-
sentation of a stimulus such as a word was started
by (Mitchell et al., 2008), who presented a model
that quite successfully (with performance well above
chance) predicted neural activation patterns associated
with nouns, using a hand-designed set of 25 verbs
(reflecting sensory-motor features) and computing
representations for the nouns based on their co-
occurrences with these verbs in a trillion-token corpus.
Following this work, (Jelodar et al., 2010) proposed

using WordNet (Miller, 1995) instead of corpus
statistics to compute the values for the 25 features
introduced in (Mitchell et al., 2008), allowing them to
deal with some of the ambiguity related issues. They
find that a linear combination of their WordNet-based
25 features and the co-occurrence based 25 features
of (Mitchell et al., 2008) improves the fMRI neural
activity prediction accuracy. Devereux et al (Devereux
et al., 2010) applied the framework to evaluate four
different feature extraction methods, each based on
a different source of information available in corpora.
They show that general computational word represen-
tation models can be as good as sensory-motor based
word representations. Later Murphy et al have done
an extensive study comparing the performance of a
different kind of corpus-based models on this task. In
their experiments, a model that exploits dependency
information outperforms the others (Murphy et al.,
2012), in line with the results that we report below.
(Binder et al., 2016) argue that it makes more sense
to use experiment based word representations to
model the mental lexicon. In (Fernandino et al., 2015)
they use sensory-motor experience based attributes
as elements of the word vectors to predict neural
activation pattern for lexical concepts. The main
difference of this approach with (Mitchell et al., 2008)
is that rather than statistics from corpora they use
actual human ratings to compute the feature values.

More recently, the success of neural network based
approaches for learning word representations has
raised the question whether these models might be
able to partly simulate how our brain is processing
language. Hence, it is now the time to revisit the
challenge Tom Mitchell introduced and evaluate
these new models with human brain neural activation
patterns. In (Anderson et al., 2017) the performance
of word2vec as the word representation model for pre-
dicting brain activation patterns is already evaluated.
The goal of their experiment was to compare a text-
based word representation with image-based models;
our goal, instead, is to compare different neural word
embedding models that are all text-based. Further-
more, (Xu et al., 2016) they compare the performance
of various word embedding models, including neural
based models and non-distributional models for both
behavioural tasks and brain image datasets.

Taking the differences between all these different
models for word representation into account, one can
argue that they are not replaceable with each other.
In (Dove, 2009) it is argued that both perceptual and
non-perceptual features are important in decoding



semantics. Moreover (Andrews et al., 2009) has
suggested combining experiential and distributional
models to learn word representations. In our experi-
ments, we want to investigate whether the information
encoded in different kind of word representations are
mutually exclusive and hence, integrating them would
result in a more powerful model.

There have also been some efforts to extend these
models to analyze and understand brain activation
patterns at sentence level (Wehbe et al., 2014) or
at least in the context of a sentence rather than an
isolated word (Anderson et al., 2016a). Moreover,
some other related work abstracts away from the
brain activation patterns and instead analyzes the
correlation between the pairwise similarity of word
representations in the brain and the computational
model under evaluation (Anderson et al., 2016b).

In this paper, we stay with the original setup,
using word representation models for predicting
fMRI neural activation patterns, but go beyond
existing work by presenting a systematic analysis and
comparison of the performance of different kind of
word representation models.

3 Experimental Setup

The main task in our experiments is to use a regression
model to map word representations to brain activation
patterns or vice versa. As the regression model, we
employ a single layer neural network with tanh
activation. To avoid over-fitting we use drop-connect
(Wan et al., 2013) with a keeping rate of 0.7 beside L2
regularization with λ=0.001. In all the experiments
we train the models for each subject separately. The
training and evaluation are done with the leave-2-out
method as suggested in (Mitchell et al., 2008). Where
we train the model on all except 2 pairs and then evalu-
ate the performance of the model on the left-out pairs.
We do this for all possible combinations of pairs.

Neuroimaging Data Our experiments are con-
ducted on the data from Mitchell et al. (2008) which is
publicly available1. This is a collection of fMRI data
that is gathered from 9 participants while exposed to
distinctive stimuli. The stimuli consisted of 60 nouns
and corresponding line drawings. Each stimulus was
displayed six times for 3 seconds in random order,
adding to a total of 360 fMRI images per participant.

Word Embedding Models In order to get insights
about how human mental lexicon is built, we use a

1http://www.cs.cmu.edu/afs/cs/project/
theo-73/www/science2008/data.html

wide variety of recently proposed word representation
models. The word embedding models that we are ex-
ploring in our experiments are in two (non-exclusive)
categories: experiential or distributional. In the
experiential model, the meanings of the words are
coded to reflect how the corresponding concept is
experienced by humans through their senses. In
the distributional models, the meaning of words is
represented based on their co-occurrence with other
words. These models can be either count-based
or predictive (Baroni et al., 2014). The word
representation models we will use are:

• Experiential word representations: Experiential
word representations are suggested based on the
fact that humans remember the meaning of things
as they experience them. In (Binder et al., 2016)
a set of 65 features are defined and crowdsourcing
is used to rate the relatedness of each feature for
each word. Thus, instead of computing the value of
features using statistical data from textual corpora
they use actual human ratings. We use the dataset
introduce in (Binder et al., 2016). Since it contains
only about 50% of the nouns in Tom Mitchell et
al dataset, some of the experiments we report are
with this limited noun set.

• Distributional word embedding models:

– Word2Vec: Word2vec basically is a shallow,
two layer, neural network that reconstructs the
context of a given word. In our experiments, we
use the skip gram word2vec model trained on
Wikipedia (Mikolov et al., 2013).

– Fasttext: Fasttext is a modification of word2vec
that takes morphological information into
account (Bojanowski et al., 2016).

– Dependency-based word2vec: The
dependency-based word2vec introduced
in (Levy and Goldberg, 2014) is a word2vec
model in which the context of the words is
computed based on the dependency relations.

– GloVe: GloVe is a count-based method. It does
a dimensionality reduction on the co-occurrence
matrix(Pennington et al., 2014).

– LexVec: LexVec is also a count based method.
It is a matrix factorization method that combines
ideas from different models. It minimizes the
reconstruction loss function that weights frequent
co-occurrences heavily while taking into account
negative co-occurrence (Salle et al., 2016b,a).

• 25 verb features: Similar to experiential word

http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
http://www.cs.cmu.edu/afs/cs/project/theo-73/www/science2008/data.html
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Figure 1: Results for the word to brain activation
prediction task. (Chance is .5)

representations, this model is based on the idea that
the neural representation of nouns is grounded in
sensory-motor features. They have manually picked
25 verbs and suggested to use the co-occurrence
counts of nouns with these 25 verbs to form the
word representations (Mitchell et al., 2008).

• non-distributional word vector representation:
(Faruqui and Dyer, 2015) have constructed a non-
distributional word representation model employing
linguistic resources such as WordNet(Miller, 1995),
FrameNet(Baker et al., 1998) etc. In this model,
words are presented as binary vectors where each
element of the vector indicates whether the repre-
sented word has or does not have a specific feature.
As a result, the vectors are highly sparse. The ad-
vantage of this model to distributional word repre-
sentations is the interpretability of its dimensions.

4 How well does each word embedding
model allow us to predict neural
activation patterns in human brain?

To address the first research question, we train a sep-
arate regression model for each word representation
model to compute the average brain activation corre-
sponding to each word for a particular subject. Figure
1 illustrates the results of evaluating these models on
the brain activation prediction task, using the leave-
2-out methodology we discussed in section 3. For the
sake of including the experiential word representations
from (Binder et al., 2016) in our evaluations, we also
conducted a set of experiments with only the nouns
that were included in the experiential word representa-
tion collection. The good news is that all the models
we are evaluating perform significantly above chance.
The fact that the ranking of the models differs per

subject makes it difficult to make general conclusions
about the best model. Overall, dependency-based
word2vec, GloVe and 25 features model are the
top-ranked models for at least one of the subjects.

Among neural word embedding models,
dependency-based word2vec is achieving the best
accuracy. This is in line with the results from (Murphy
et al., 2012), where they showed that the corpus-based
model considering the dependency relationships has
the highest performance among corpus-based models.
These authors report an accuracy of 83.1 (with 1000 di-
mensional word vectors). Somewhat higher still than
the best dependency based word2vec, and the highest
performance reported in the literature until now for
a corpus-based model. The fact that fasttext and de-
pendency based word2vec are performing better than
word2vec might reflect the importance of morpholog-
ical and dependency information. Comparing predic-
tive models with count-based models, although count-
based methods like GloVe and LexVec are beating sim-
ple word2vec, looking at the performances of fasttext
and dependency based word2vec, we can conclude
that the context prediction models can potentially
perform better. Moreover, comparing the performance
of the Experiential Model with 25 feature model, we
see that the Experiential Model is doing slightly better
on average while their ranking is different per subject.
Either the higher number of features or the way fea-
ture values are computed could have led to the slight
improvement in accuracy for the experiential model.

In both sets of experiments in Figure 1 the
non-distributional word representation model has the
lowest performance. The very high dimensionality of
the brain imaging data versus the sparseness of non-
distributional word vectors make training the regres-
sion model with these vectors much harder and this
might be the primary reason for its low performance.

Next, instead of predicting brain activation patterns,
we train the regression model to predict the word
representation given a brain activation. Thus, we want
to predict the stimulus word from the neural activation
pattern in the brain. Evaluation is still based on the
leave-2-out setup (so we still evaluate with 2 brain im-
ages and 2 word embeddings at each instance, making
quantitative results comparable across experiments).

The results are shown in Figure 3. We expected
the performance of the models on the reversed task,
predicting word features from brain activation, to be
somewhat similar to their performance on the main
task, predicting brain activation patterns from word
vectors. However, the results are surprising. For the
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Figure 2: Results of different word representation models for the word to brain activation prediction task for
the limited set of word, split per subject.
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Figure 3: Results of different word representation
models for the brain activation to word representation
prediction task.

25 features model, the accuracy on the reversed task
is much lower. This may be because of the way the
feature vector for nouns is distributed in the space
in this model. Or it could be that neural activation
patterns do not encode all the necessary information to
approximate these feature values. This could indicate
that while the 25 features model is pretty useful in
interpreting brain activation patterns it is not a plau-
sible model to simulate how nouns are represented in
the human brain. On the other hand, it seems that it is
very easy to construct GloVe word vectors from brain
activation patterns; this model achieves an accuracy
of 90 percent. In (Sudre et al., 2012) accuracy of
91.19 percent is reported on the similar task on MEG
data. GloVe is based on the distributional semantics
hypothesis, and it is achieved by learning to predict
the global co-occurrence statistics of words in a
corpus. Hence, obtaining a high accuracy in the word
prediction task using GloVe, supports the fact that the
context of the words have a major role in the way we
learn the meanings of the words. The important thing
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Figure 4: Mismatched word pairs for subject 1: 25
features model (red) vs experiential model (blue). In
purple, word pairs confused by both models.

to notice is that of course the more information we
encode in the word representation the more powerful
it becomes in predicting neural activation patterns
as far as that information are relevant to some extent.
However, this alone doesn’t imply that the exact
same information is encoded in the neural activation
patterns. As we can see in our results, compared to
GloVe, it’s not that easy to reconstruct the Fasttext
and dependency based word vectors from the brain
activation patterns. What we can conclude, for now, is
that while morphological and dependency information
is helpful in learning word representations that are to
some extent more similar to the neural representation
of nouns in our brain. This information is not
explicitly encoded in the brain activation patterns.

In the end, only comparing the accuracy of these
models does not reveal much about the differences
between them and does not mean that the model with
the highest accuracy can replace all the others.
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Figure 5: Mismatched pairs for subject 1: dependency
based word2vec (red) vs experiential model (blue)
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Figure 6: Mismatched pairs for subject 1: dependency
based word2vec (red) vs word2vec (blue)

5 What is the best word
embedding model for predicting brain
activation for different (classes of) nouns?

In order to get more insights about the differences
between the models, we look into the errors they
make. It is informative to see whether each of these
models is good at predicting neural activation pattern
for a different group of noun pairs. We want to
test the hypothesis of whether human brain uses
different mechanisms for understanding meanings of
different categories of words (Riddoch et al., 1988;
Caramazza et al., 1990; Warrington and Shallice,
1984; Caramazza and Shelton, 1998). To investigate
this we look into the miss matched noun pairs for
each of the word representation models. We want to
see which are the most confusing noun pairs for each
model and measure the overlap between the errors
the models make. This will reveal if these models are
actually encoding different kinds of information.

Figures 4, 5 and 6 show the overlap between
mismatched pairs for different models for subject

1. In these plots, the red color corresponds to the
first model mentioned in the caption, the blue colour
corresponds to the second model and the purple
colour indicates the overlaps. While there is some
overlap between the mistakes of the 25 features model
and the experiential model, considerable number of
mismatched pairs are not in common between them.
One interesting fact about the 25 features model
is that for some specific nouns ie. “bear”, “foot”,
“chair”, and “dresser”, no matter what is its pair,
discrimination performance is poor. eg. “bear” is not
only confused with other animals, but also with some
body parts, places and etc. We do not notice similar
phenomena for the experiential model. This could
be a side effect of using co-occurrence statistics from
corpora to learn word representations and could show
that for some reason the representations learned for
these nouns are not distinguishable from other nouns.
Looking into the noun pair mismatches of the expe-
riential model and the dependency based word2vec
in Figure 5, again we see a considerable amount of
overlap. They both perform equally for discriminating
among animals. But the experiential model makes
more mistake about “body parts” and “insects”. Com-
paring the dependency based word2vec with simple
word2vec, in Figure 6 we observe similar patterns
to Figure 4. As illustrated in the plot, discriminating
some words eg. “chair” is difficult for word2vec
while it’s not the case for dependency based word2vec.
It seems like both experiential attributes of nouns and
the dependency information is helping in learning
more distinguishable representations for nouns.

5.1 25 features vs experiential
As shown in Figure1, the experiential model performs
better than the 25 features model in average. Con-
sidering the fact that these two models are reflecting
the same underlying theory, we might expect that if
one of them is more accurate, it can replace the other.
However, by looking into the difference between
their mismatched pair, Figure 7, we observe that the
mistakes these two models make are not completely
overlapping: the nouns ‘arm’ and ‘hand’ are difficult
to discriminate for both models, while ‘chair’ and
‘house’ are among the nouns with most mistakes
for the 25 features model, and ‘horse’ and ‘door’
for the experiential model. For both models, most
mismatches are in the category of body parts.

5.2 GloVe vs Dependency-based word2vec
We also compare the mismatch pairs for GloVe and
dependency based word2vec as the two neural models



(a) Mismatched pairs for the 25 features
model

(b) Mismatched pairs for the experiential
model

(c) Difference between mismatched pairs

Figure 7: Comparing mismatched pairs for the 25 features model and the experiential model averaged over
all subjects. Axes are the same as in figure 4.

(a) Mismatched pairs for dependency
based word2vec

(b) Mismatched pairs for GloVe (c) Difference between mismatched pairs

Figure 8: Comparing mismatched pairs for dependency based word2vec and GloVe averaged over all subjects

Figure 9: Difference of mismatched pairs for
dependency based word2vec and experiential model

that achieve the highest accuracies in Figure 8. These
two models are different both in the richness of the
information they use to learn word representations,
and also the way they use this information. In glove,
the model is trained based on the global co-occurance
of words whereas in word2vec word representations
are learned based on the context of the words for each
example locally. For GloVe, similar to the 25 features
model and the experiential model, ‘arm’ is one of the
hardest to discriminate nouns. But the ‘body parts’
category is not as confusing as for the experience
based models. For the dependency-based word2vec,
the patterns of errors are somehow different and
the most difficult word seems to be ‘fly’. This is
because ‘fly’ can be either verb and noun, and since
it is more frequent as a verb, the dependency-based

model is learning the representation of its verb form.
For GloVe, this is not very problematic because it is
only based on co-occurrence counts, thus an average
representation is learned. In general, despite the
fact that these two models are based on different
assumptions their mismatches have more overlap than
for the two experiential models. This may be a side
effect of the fact that they both make fewer mistakes.

5.3 Experiential
vs Dependency-based word2vec

The mismatched pairs of the experiential model and
the dependency based word2vec and their difference
is illustrated in Figure 9. The experiential model
seems to have less prediction accuracy for noun pairs
in the same category.

6 Which are the most predictable voxels in
the brain for each word embedding model?

Each of the computational models of word representa-
tion we have employed to predict brain data is based
on modelling different aspects of words meanings.
Now we want to investigate if our brain is doing a
combination of all these mechanisms and different
groups of voxels in the brain are responsible for
processing each aspect? One way to test this is to look
into the predictability of different voxels with each



Figure 10: Most predictable voxels for dependecy
based word2vec(red) and the experiential model(blue)

Figure 11: Most predictable voxels for dependecy
word2vec(red) and word2vec(blue). Green dots are
among the top 50 voxels of both models.

of these models. For this purpose, we have identified
the top 50 most predictable voxels for each model. In
Figure 10 you can see the 50 most predictable voxels
for dependency-based word2vec and the experiential
model. In Figure 11 you can see the 50 most
predictable voxels for dependency-based word2vec
and simple word2vec. The green colour indicates
the common top voxels between the two models.
From these figures, we can see that there is a lot more
overlap between the dependency based word2vec and
word2vec, compared to the experiential model.

A Mixed Model If each model is good at predicting
the neural activation pattern for a different group of
nouns/different groups of voxels, theoretically, it is
possible to build a better model using an integrated
model. In other words, we should be able to improve
the accuracy of predicting neural activation patterns
by employing a combined model. We conduct a
new experiment by integrating the dependency based
word2vec as a neural corpus-based word representa-
tion with the experience based models, ie the 25 verbs
model and the experiential model. We expect the
performance of the model to be a little bit higher than
the dependency based word2vec. Our results indicate

that combining the dependency based word2vec with
the experiential model linearly doesn’t lead to an
improvement in the accuracy over the limited set of
words available in the experiential model. However,
linearly combining the 25 feature model with the de-
pendency based word2vec leads to an accuracy of 82
percent over the 60 nouns, which is 2 percent higher
than the accuracy of the dependency-based model.

7 Discussion and Conclusion

Based on our systematic comparison, we can conclude
that the deep learning models for learning word repre-
sentations fit very well with brain imaging data. The
existing models, like dependency based word2vec, are
already beating the experiential word representation
models that are particularly designed for the brain
activation decoding tasks. Moreover, comparing the
results of learning the mappings from words to brain
activations and vice versa, convinces us that it is impor-
tant to study the performance of the models in both di-
rections to really understand what kind of information
is encoded in the neural activation patterns for words.

Looking into the details of the performance of
these models, it turned out that each of them makes
different kinds of mistakes. One of the main problems
of the corpus based distributional models that we have
applied is that they do not account for different senses
of the words. Hence, the representations they learn
for words with more than one sense can be noisy and
biased toward the most frequent sense. Taking the dif-
ferences between the models into account, we build a
model that combines the experience based word repre-
sentation model with the dependency based word2vec.
By linearly combining the 25 features model with
the dependency-based model we are able to achieve
a higher accuracy on the brain activation prediction
task. We think it is possible to build new models upon
the dependency based word2vec which also encode
experiential information. One possible approach to
achieve this goal is to train word embedding models
in a multi-task learning framework with the down-
stream tasks that reflect different types of real-life
experiences in addition to language modelling tasks.

In addition, in order to have a better understanding
of the differences between different word represen-
tation models, we need to do a further analysis to
answer the question Which are the most predictable
voxels in the brain for each word embedding model?
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