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Abstract

This paper presents evidence of a linguistic fo-
cus effect on coreference resolution in broad-
coverage human sentence processing. While
previous work has explored the role of promi-
nence in coreference resolution (Almor, 1999;
Foraker and McElree, 2007), these studies use
constructed stimuli with specific syntactic pat-
terns (e.g. cleft constructions) which could
have idiosyncratic frequency confounds. This
paper explores the generalizability of this ef-
fect on coreference resolution in a broad-
coverage analysis. In particular, the cur-
rent work proposes several new estimators
of prominence appropriate for broad-coverage
sentence processing and evaluates them as
predictors of reading behavior in the Natural
Stories corpus (Futrell, Gibson, Tily, Vishn-
evetsky, Piantadosi, and Fedorenko, in prep), a
collection of “constructed-natural” narratives
read by a large number of subjects. Results
show a strong facilitation effect for one of
these predictors on exploratory data and con-
firm that it generalizes to held-out data. These
results provide broad-coverage support for the
hypothesis that coreference resolution is easier
when the target entity is focused by discourse
properties, resulting in faster reading times.

1 Introduction

Coreference resolution has often been assumed to
incur processing costs due to some form of memory
retrieval or search through accessible antecedents,
similar to the binding problem for syntactic de-
pendency attachment (Felser, Phillips, and Wagers

2017). This search has been shown to be facili-
tated by linguistic focus (or prominence or salience)
arising from syntactic, pragmatic, semantic, lexical,
information structural and other factors. Previous
work has investigated the role of linguistic focus
in coreference resolution using constructed stimuli
(Perfetti and Goldman, 1974; Greene et al., 1992;
Almor, 1999; Foraker and McElree, 2007). How-
ever, as discussed in Shain et al. (2016), effects
found using constructed stimuli often fail to general-
ize to broad-coverage sentence processing. It is pos-
sible that results obtained using constructed stimuli
are due in part to (1) information-theoretic factors
that such studies rarely control for (e.g. surprisal),
(2) limited syntactic coverage, and/or (3) properties
of the stimuli themselves that are atypical of natu-
ralistic sentence processing (e.g. overrepresentation
of rare constructions, odd semantics, or lack of con-
text).

While previous work (Almor, 1999; Foraker and
McElree, 2007) has operationalized prominence or
linguistic focus using cleft constructions, such con-
structions are very rare (Roland et al., 2007) and
therefore cannot be relied upon to predict online pro-
cessing in the broad-coverage setting.

The current work addresses these concerns by de-
ploying novel broad-coverage implementations of
focus as predictors of reading times in a large cor-
pus of naturalistic self-paced reading (SPR) by many
subjects (Futrell, Gibson, Tily, Vishnevetsky, Pianta-
dosi, and Fedorenko, in prep). Following Shain et al.
(2016), the current work evaluates these predictors
against a baseline including both n-gram and prob-
abilistic context-free grammar (PCFG) estimates of



incremental surprisal. Using this procedure, results
show a significant facilitatory effect of predictors
relating to linguistic focus on reading time laten-
cies, supporting the hypothesis that focus effects for
coreference observed using constructed stimuli do
indeed generalize to broad-coverage sentence pro-
cessing.

2 Related Work

The current study draws on two broad areas of in-
vestigation in the psycholinguistic literature: (1) the
role of linguistic focus in coreference resolution and
(2) the use of broad-coverage methods to test models
of human sentence processing.

2.1 Linguistic focus and coreference resolution

Linguistic focus directs subjects’ attention toward
particularly salient or important discourse referents
during sentence processing. Studies such as Perfetti
and Goldman (1974), Greene et al. (1992), Almor
(1999), Foraker and McElree (2007) and Sauermann
et al. (2013) have explored the effects of linguistic
focus on subjects’ processing of coreference.

Greene et al. (1992) offer a model of pronoun res-
olution within a rich discourse representation that
recognizes syntactic, semantic, and pragmatic fac-
tors for referent focus. Syntactic factors that can in-
crease focus include clefting (e.g., It was the bird
that ate the fruit), subject vs. object position (e.g.,
The bird ate the fruit), predicative vs. prenomi-
nal modification (e.g., the red house is beautiful),
and the status of nouns introduced as verbal com-
plements vs. nominal compounds (e.g., The boat is
located in the boathouse). Semantic and pragmatic
factors include the causal role of a referent, where
the perceived causal agent of a verb could be more
focused than the verb’s other arguments. Addition-
ally, referents more closely related to the topic can
increase focus for those referents. The Greene et al.
model matches features of each anaphor automati-
cally and in parallel to the features of all the entities
in the discourse. If the match of one entity is suffi-
ciently high, the entity is chosen, otherwise resolu-
tion is delayed or additional inference might occur.

Almor (1999) argues for a discourse focus effect
in a self-paced reading paradigm. For example, Al-
mor uses it-clefts to focus the subject: It was the

robin that ate the fruit. The bird seemed quite sat-
isfied; and wh-clefts to focus the object: What the
robin ate was the fruit. The bird seemed quite satis-
fied. In a self-paced reading (SPR) experiment, sub-
sequent mentions of focused referents are read more
quickly.

Foraker and McElree (2007) use a speed-accuracy
tradeoff (SAT) paradigm (Wicklegren, 1977) to ex-
plore the relationship between prominence and pro-
cessing cost. Referents are made more promi-
nent using constructed it-cleft stimuli, as in Almor
(1999). They find improved accuracy for retrieval of
prominent referents but — contrary to Almor (1999)
— no effect on access speed.

Sturt and Lombardo (2005) explore the time
course of coreference resolution, showing evidence
that syntactic structure is available before the end
of the utterance, and therefore that coreference de-
cisions are plausibly occurring in an online and in-
cremental way. They find that eye-tracking data
for sentences like The pilot embarrassed Mary and
put himself/herself/him/her in a very awkward situ-
ation, show distinct patterns between the reflexive
and simple pronoun conditions, indicating that syn-
tactic structure is available and influencing process-
ing even before the end of the sentence. Findings
like these motivate our use of SPR as a measure of
incremental processing difficulty in coreference res-
olution.

While the present study relies on the aforemen-
tioned approaches in operationalizing focus, it ex-
tends earlier work by using coreference-based fo-
cus predictors in broad-coverage naturalistic reading
and in so doing explores implementations of focus
that are better adapted to broad-coverage analysis.

2.2 Broad-coverage investigation of human
sentence processing

As discussed in Section 1, naturalistic stimuli have
an advantage over task-specific constructed stimuli
in terms of ecological validity. Several previous
studies have investigated sentence processing using
naturalistic stimuli. This work typically uses lin-
ear mixed-effects modeling (LME) to regress vari-
ables of interest as predictors of some measure of
processing difficulty (e.g. reading fixation times).
Demberg and Keller (2008) examine syntactic de-
pendency length as a predictor of eye-tracking fixa-



tion durations during reading of the newspaper texts
contained in the Dundee corpus (Kennedy et al.,
2003). They do not replicate the locality effects
found in constructed experiments (Gibson, 2000;
Grodner and Gibson, 2005) except when the analy-
sis is restricted to certain parts of speech. Frank and
Bod (2011) use echo state networks to compare the
fit of linear vs. hierarchical probabilistic language
models to eye-tracking fixation durations, finding
no significant contribution of hierarchy to model fit.
Van Schijndel et al. (2013) implement a measure of
memory retrieval cost built on a left-corner parsing
strategy and find a significant facilitation effect for
retrieval cost on the Dundee corpus, such that tokens
predicted to require more costly retrieval operations
were integrated more quickly during reading.

In all of the aforementioned studies, effects ob-
tained using constructed stimuli do not generalize
to naturalistic sentence comprehension. Exceptions
exist, however. For example, Shain et al. (2016)
show the predicted inhibitory effect of dependency
length on reading times in the Natural Stories cor-
pus (also used in the current experiments), and Bren-
nan et al. (2016) and Lopopolo et al. (2017) find in-
creased neural response in certain brain regions1 to
various types of probabilistic language models. To
our knowledge, the current work is the first to ex-
tend these broad-coverage methods to the study of
coreference resolution.

3 Data

The experiments described in this paper use the Nat-
ural Stories corpus (Futrell, Gibson, Tily, Vishn-
evetsky, Piantadosi, and Fedorenko, in prep), which
consists of 10 stories with reading times from 181
subjects using a self-paced reading (SPR) paradigm.
These stories occupy an intermediary position be-
tween isolated constructed examples on the one
hand and naturally-occurring text on the other. They
are written in order to sound fluent while contain-
ing an unusually high proportion of low-frequency
words and syntactic constructions which are in-
tended to test the effects of different kinds of mem-
ory usage. The corpus contains 485 sentences with
768,023 total events, where an event is one subject

1As measured by fMRI blood oxygen level dependent con-
trast imaging (BOLD)

reading one word. Reading times exceeding two
standard deviations from the subject mean, shorter
than 100ms, or longer than 3000ms are excluded as
outliers.

For this work, the data is divided into 1/3 de-
velopment or exploratory and 2/3 test or confirma-
tory partitions. All main effects are evaluated first
on exploratory data, and the optimal main effect (in
terms of improvement to model fit over the base-
line) is then selected for evaluation on confirmatory
data. This data split allows for the optimization of
model predictors and parameters on the exploratory
set, and eliminates the need for multiple trials cor-
rection since only one model is applied to the con-
firmatory partition.

3.1 Coreference Annotation

The current work marks all mentions that are coref-
erential, in contrast to many previous studies of
coreference that are restricted to pronominal coref-
erence. This allows the model to be run on all in-
stances of coreference as well as a pronoun-only
subset of the data. Due to model convergence is-
sues for the pronoun-only subset, however, reported
results are for the larger dataset of all anaphoric
expressions, including pronouns and full referring
forms.

All words referring to the same entity or sub-
sets of previously mentioned sets of entities are an-
notated with the sentence and word index of the
most recent previous mention of that entity. See
Fig. 1 for example annotations. Annotation guide-
lines largely follow those from the OntoNotes 5.0
corpus (Weischedel et al., 2013) for identity coref-
erence, except that (1) possessive pronouns are in-
cluded in annotations, and (2) referents are asso-
ciated with referring words rather than constituent
spans. For example, where the OntoNotes guide-
lines link a good suggestion to it in the sentence,
She had a good suggestion and it was unanimously
accepted, the current annotation links the referring
word, suggestion to the anaphor it.2

2Because the reading time data is measured by word, men-
tion spans that include multiple words would be difficult to use.
That is, there is no clear procedure for assigning credit for ob-
served latencies to the various predictors that are involved in
the span. Essentially, because both the predictors and observed
reading times are defined in terms of words, so must be the



The current annotation also adds possessive de-
terminers like his, her, its, which are not included in
the OntoNotes identity coreference guidelines. For
this study, it is assumed that such determiners re-
quire some kind of coreference resolution similar
to that required for identity coreference. It is pos-
sible that a range of coreference types from strict
identity coreference to more weakly related bridg-
ing anaphora, for example, would involve different
processing strategies, but annotations of these dis-
tinctions is substantially more complex and left for
future work.

3.2 Baseline Predictors
In order to isolate new effects, it is necessary to sta-
tistically control for known effects. These experi-
ments use word length, n-gram surprisal, syntactic
surprisal, and story position.

Word length is a baseline predictor measured as
the number of characters in each word. Longer
words are predictive of longer reading times.

Surprisal (Hale, 2001) is the log of the inverse fre-
quency, which increases as the frequency decreases.
The log transform makes surprisal a more linear
measure of exponential changes in stimulus. The
linearity of surprisal is desirable not only because
it allows LMER fitting, but because it corresponds
with the Weber-Fechner law (Fechner, 1966), which
maintains that perception of stimuli increase addi-
tively as stimulus strength increases multiplicatively.
Stevens’ power law (Stevens, 1957) expresses a sim-
ilar relationship. For word frequencies, which ex-
hibit a Zipfian curve, the log of the probability essen-
tially converts the frequencies to a linear perception
curve, allowing easier differentiation of the relative
rarity of words that occur exponentially more or less
frequently.

Ngram Surprisal controls for conditional word
frequency, given preceding words as context, and is
a commonly used baseline effect (Monsalve et al.,
2012; van Schijndel and Schuler, 2015). 5-gram
probability is calculated as the linear combination of
most likely n-grams up to 5 words long, including
the target word. Because longer n-grams are often
infrequent and thus have poor or non-existent fre-
quency estimates, Kneser-Ney smoothing allows the

coreference annotation. Therefore, for multi-word mentions,
the referring word is chosen.

full sequence to be estimated as an interpolation of
shorter n-grams. Following Shain et al. (2016), this
work uses 5-gram probabilities from the Gigaword
4.0 corpus (Graff and Cieri, 2003) using the KenLM
toolkit (Heafield et al., 2013):

S(wi) = − log P (wi|wi−n...wi−1) (1)

To control for the effect of surprisal due to syn-
tactic context, the current work estimates the proba-
bility of syntactic tree structure at each given word
(Shain et al., 2016; van Schijndel and Schuler,
2015). Syntactic context is defined as the linear
combination of all previous syntactic rule produc-
tions up to the current word.

Probabilistic Context-Free Grammar (PCFG)
Surprisal follows that used by van Schijndel and
Schuler (2015) and comes from an incremental
parser (van Schijndel et al., 2013) using the Gen-
eralized Categorial Grammar (GCG) framework of
Nguyen et al. (2012). Specifically, PCFG surprisal
is defined as the sum of negative log probabilities
of words given possible trees that span from the
first word to the current word. This is analogous
to n-gram surprisal, but uses hierarchic tree context
rather than linear context:

S(wi) = − log P (Ti = wi|T1...Ti−1 = w1...wi−1)

(2)
where T is a random variable over all trees and
T1...Ti are its first i leaf nodes.

Story Position is a measure of progress through
the story, where each value is computed as the cur-
rent sentence index divided by the total number of
sentences in the story. For example, the 50th sen-
tence in a 100 sentence story would have a story po-
sition of 0.5 for each word in that sentence. This
predictor could be interpreted as a percent comple-
tion measure that is intended to model order effects
due to fatigue, practice or environmental factors, and
generally control for a base rate of reading as the
story progresses. There is potential for discourse
predictability to also be captured with the baseline
predictor, analogous to sentence position but gen-
eralized to the discourse level, where the space of
possible continuations decreases as more informa-
tion becomes available.



The Lord saw the severity of the problem the people faced and suggested a contest could solve the problem.
He said that whoever could kill the boar and bring as proof its head ... would be rewarded with land and
fame. It was the people of Bradford ... who rejoiced at this proclamation but one question remained: who
would kill the boar?

Figure 1: Example coreference annotation. Words in rectangles are linked to the most recent previous mention.

The Lordi saw the severity of the problemj the people faced and suggested a contest could solve the problemj .
MentionCount 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
WordDistance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 10
ReferentDistance 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 5

Hei said that whoever could kill the boark and bring as proof itsk head would be rewarded with land and fame.
MentionCount 1 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0
WordDistance 18 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 0 0 0 0 0
ReferentDistance 9 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 0 0 0 0 0

Table 1: Example predictor values. MentionCount is the number of previous mentions to the same referent. The two other predic-

tors measure distance in words or referents, respectively, back to the antecedent. Words sharing a subscript value are coreferential.

Sentence Position was originally included in the
baseline, but was removed as the weakest predictor
in order to overcome model convergence issues.

3.3 Broad-coverage implementations of focus

Because naturalistic stimuli in English rarely con-
tain the kinds of constructions used to control lin-
guistic focus in constructed stimulus experiments
(Roland et al., 2007), it is necessary to imple-
ment focus in some other way. This work explores
two types of implementations: frequency-based and
recency-based.

The frequency-based implementation, Mention-
Count, is calculated as the running count of men-
tions in a coreference chain. The first mention has
count 0, the subsequent mention count 1, and so
on. This measure is closely related to the notion of
thematization used in Perfetti and Goldman (1974),
who also use repetition as an index of focus. As
a predictor, MentionCount is meant to test the hy-
pothesis that more frequent referents are faster to
access. Incidentally, MentionCount is quite simi-
lar to the measures of topicality proposed by Givón
(1983), suggesting a potential connection between
the discourse notion of topicality and the attendant
psychological effects that is left for future research.

The recency-based implementations follow e.g.
McElree (2001) in assuming that more recently
mentioned entities are more prominent and thus
more likely to be remembered better. Specifically,

these experiments use two measures of the distance
between the current word and the most recent men-
tion of its referent: number of intervening words,
and number of intervening discourse referents. Fol-
lowing Gibson (2000) discourse referents are oper-
ationalized in the latter option as nouns or verbs,
here including pronouns and non-finite verbs. Ex-
periments also evaluate log-transformed versions of
each of these distance measures, modeling the pos-
sibility of non-linear decay over time in likelihood
that linguistic focus for mentioned entities results in
processing facilitation.

Table 1 shows example values for the Mention-
Count and word- and referent-based recency predic-
tors. Log transformed versions of the recency pre-
dictors are not shown in this figure. For the first sen-
tence, problem is mentioned twice. The first mention
has zero previous mentions, while the second has
one. Distance in words is 10 between the two men-
tions, and distance in referents (nouns and verbs)
is 5.

4 Statistical evaluation

Each main effect predictor is evaluated on the ex-
ploratory data via likelihood ratio test (LRT) of two
fitted linear mixed effects (LME) models, one in-
cluding the main effect as a fixed effect and one ex-
cluding it. Both models also contain a set of base-
line fixed effects: word length, 5-gram forward sur-
prisal, incremental PCFG surprisal, and story posi-



tion. All models include all baseline fixed effects.
Models also include by-subject random slopes for
the main effect and every baseline effect, with the
exception of syntactic surprisal, whose by-subject
random slopes were removed as the weakest predic-
tor in order to overcome lack of convergence.

Experiments evaluate each main effect over all in-
stances of coreference, as the smaller pronoun-only
subset did not converge reliably.

Delays in the time course of processing effects
can be modeled by spillover (Erlich and Rayner,
1983), where the effect of an independent variable is
predicted to be observed n words later. Using stan-
dard linear regression on the exploratory dataset, we
found the best-fit spillover position of the baseline
predictors to be zero (in situ) with the exception of
PCFG surprisal, which is optimally spilled over by
1 position. In addition to optimizing the baseline
predictors, we consider both in situ and spillover-1
variants of each of our main effects.3

The reading time measures are transformed fol-
lowing Box and Cox (1964) to match assumptions
of normality by the likelihood ratio test. These ex-
periments use a coefficient of λ = -0.63.4 All pre-
dictors are also centered and z-transformed prior to
regression.

5 Results

MentionCount in the spilled-over position is highly
significant on exploratory data. Results for recency-
based predictors in the exploratory data partition are
extremely weak, and so they are not evaluated on

3The reason for choosing a single optimal spillover position
for each variable rather than considering multiple spillover posi-
tions simultaneously (as in Smith and Levy, 2013, for example)
is that our data are too sparse to support such highly parameter-
ized models given that we are controlling for heterogeneity in
the population via by-subject random slopes for each indepen-
dent variable. Since there are 181 subjects in the dataset, each
additional independent variable (including each additional mod-
eled spillover position for a given independent variable) con-
tributes 181 additional slopes to estimate.

4The effect estimates given in Table 2 are presented in mil-
liseconds for expository purposes. However, this is in fact a
back-transformation of β into milliseconds using the equation
β-ms = (λȳ′+λβ+1)1/λ−(λȳ′+1)1/λ, where ȳ′ is the mean
of the transformed reading times (1.55 in our data). Because
Box and Cox (1964) introduces non-linearity, β-ms is only valid
at the back-transformed mean, holding all other effects at their
means.

Effect Size (ms)
Effect Predictor units SD
Word Length 2.17 4.23
Syntactic Surprisal 0.36 1.65
5-gram Surprisal 2.34 3.57
Story Position -19.2 -6.62
MentionCount*** -0.14 -2.81

Table 2: Effect sizes for main and baseline predictors on confir-

matory partition of data. The main effect, spilled over Mention-

Count, is highly significant (p = 7.05e − 5). Negative effect

direction indicates a speed-up in reading times. SD shows β-

effect in milliseconds per unit of standard deviation. Predictor

Units are the effect size in milliseconds, rescaled to the origi-

nal predictors’ units. Model includes observations from spilled

over anaphors, totaling 59,632 observations. Word Length is

measured in characters, Surprisal is measured in bits, and Story

Position is the proportion of sentences completed, scaled be-

tween 0 and 1.

confirmatory data.
Due to the separation of data into exploratory and

confirmatory partitions, and subsequent testing on
confirmatory data only once, no multiple trials cor-
rection is required. Our results are consistent with
a general pattern of smaller effect estimates in nat-
uralistic vs. constructed studies of human sentence
processing (Demberg and Keller, 2008; Smith and
Levy, 2013; van Schijndel and Schuler, 2015; Shain
et al., 2016). It might be the case that relatively
muted tendencies in naturalistic human sentence
processing are exaggerated in artificial settings de-
void of conversation context or the implicit intended
use of language for communication. The Mention-
Count values range from 0 to 90, with µ = 2.4
and SD = 9.3. The baseline predictors all have
plausible effect estimates. The Word length effect
is positive, as expected, indicating a slowdown as
word length increases. The linear 5-gram and hierar-
chic syntactic surprisal effects are both positive, in-
dicating that processing difficulty increases with un-
predictability of the current token given its context.
Story position effect is negative, showing a general
decrease in reading times as the story progresses.

As a sanity check, a simpler linear only model (no
random effects) was run with the baseline predictors
but not MentionCount. Figure 2 presents the resid-
uals mapped to the MentionCount predictor value,



Figure 2: Scatterplot of residuals from simple linear model

(no random effects) without MentionCount plotted to spilled-

over MentionCount predictor. Fit line shows slight downward

trend, indicating main effect of MentionCount to reduce reading

times.

showing a slight negative trend that demonstrates
that for high values of MentionCount, the baseline’s
predictions of reading times are too high. This neg-
ative correlation between MentionCount and read-
ing times is evident in the full LMER result. Ad-
ditionally, there is no obvious confound from ex-
cessive residuals being due to items at any given
MentionCount value.

6 Discussion

These results complement previous work on coref-
erence resolution in constructed stimuli by provid-
ing strong evidence of a broad-coverage discourse
focus effect on coreference resolution. The imple-
mentation of linguistic focus that successfully im-
proved model fit was based on frequency rather than
recency of mention. This is a potentially impor-
tant secondary finding, since recency-based effects
were found in syntactic dependency locality effects
(Shain et al., 2016). The current negative result
for coreference-based recency effects does coincide
with related lack of recency effects for syntactic de-
pendencies from Demberg and Keller (2008) (who

also used somewhat naturalistic stimuli), and could
be attributable to a number of factors. It is possible
that a hybrid estimator — taking into account both
recency and frequency of mention — might show
stronger effects than those presented here. Addition-
ally, since proforms are unlikely to occur at great
distance to their antecedents, separating recency ef-
fects by anaphor type (full-referring vs. proform)
could result in better predictors. Lastly, recency ef-
fects might be weak at short to moderate distances
where coreference succeeds, but could increase in
strength for constructed stimuli where the pronouns
are used further from antecedents than is normal,
and initial coreference fails, resulting in reanalysis.
Of course, these unnatural recency effects would not
be detectable or applicable when analyzing natural-
istic stimuli.

It is possible that what we have interpreted as a
linguistic focus effect is in fact related to surprisal.
If subjects are attempting to predict discourse men-
tions in advance, it is possible that they are reallo-
cating probability mass to mentions of entities as a
function of the number of times they have been men-
tioned in the past, thereby reducing surprisal and fa-
cilitating processing of mentions consistent with this
prediction. Whether the effect is indeed driven by
focus or is instead driven by prediction is also left to
future research.

Finally, after considering that high values of
MentionCount can only exist toward the end of sto-
ries, we considered a potential confound of story
position, or relative completion of the story. Story
position turns out to be an extremely strong predic-
tor that we argue should be added to future base-
lines for this type of data. Despite this, spilled-
over MentionCount is still highly significant over
this more rigorous baseline.

7 Conclusion

This work provides evidence of a linguistic fo-
cus effect based on reading time latencies from a
coreference-annotated corpus of naturalistic stim-
uli. Experiments on naturalistic stimuli suggest that
mention count is a plausible broad-coverage imple-
mentation of linguistic focus and show that more
mentions of an entity are correlated with faster read-
ing times.
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